We build up a series of explicatory examples of the mean-field fixed-point method, culminating in the derivation of the ground-state phase diagram of the Fermi- Hamiltonian with effective Rydberg interaction potential.
We perform three simple self-consistent runs of the fixed-point search, for different values of $V_1$ and $V_2$. For these values, the system is expected to be, respectively, in a site-nematic insulator, a stripe insulator and in a quantum anomalous Hall phase.
Site-nematic phase, finite $\rho_1$
MyCl = mean_field_analysis()
V1,V2 = 5,1
MyCl.prepare_run(V1=V1,V2=V2)
MyCl.fixed_point_method()
MyCl.prt_postrun_data()
The site-nematic is the low-energy charge order for distance-4 interaction $V_4$, hence also $\rho_4$ is finite.
Starting out with a random complex correlation matrix, the run is concluded with a minimum number of iterations. A good convergence is reached in the gradient of both the correlation matrix and the free energy. The largest order parameter is many orders of magnitude larger than all others, indicating clear convergence in one phase, in this case the site-nematic.
Stripe phase, finite $\rho_2$
MyCl = mean_field_analysis()
V1,V2 = 3,4
MyCl.prepare_run(V1=V1,V2=V2)
MyCl.fixed_point_method()
MyCl.prt_postrun_data()
Topological phase, finite $\xi_{\textrm{QAH}}$
MyCl = mean_field_analysis()
V1,V2 = 2.4,1.6
MyCl.prepare_run(V1=V1,V2=V2)
MyCl.fixed_point_method()
MyCl.prt_postrun_data()
The three operations can be carried out using one method, single_run()
MyCl = mean_field_analysis()
V1,V2 = 2.4,1.6
MyCl.single_run(V1=V1,V2=V2)
Phase diagram of the $V_1$-$V_2$ model.
Vgrid=13
markersize=250
V3=0.0
verbose=False
V1V2region=[2,6,0,4]
MyCl = mean_field_analysis()
MyCl.prepare_grid_run(V3=V3, verbose=verbose, Vgrid=Vgrid, V1V2region=V1V2region)
Vsarray_pool=MyCl.get_pool()
for counter, Vsarray in enumerate(Vsarray_pool):
MyCl.prepare_run(Vsarray=Vsarray, verbose=verbose)
MyCl.fixed_point_method()
MyCl.prt_postrun_data(verbose=verbose)
MyCl.store_grid_data(counter)
MyPlt = MyCl.plot_phasediag_fixedV3(figsize=4, markersize=markersize)
display.clear_output(wait=True);
MyPlt.show()
The presence of a QAH topological phase is marked. Repetition of the runs, starting with different initial correlation matrix, refines the phase diagram, particularly at the phase transitions.
The following two commands integrate all the operations done above.
MyCl.grid_run(Vgrid=Vgrid, V1V2region=V1V2region)
MyCl.plot_phasediag_fixedV3(figsize=4, markersize=500).show()
Effect of the $V_3$ interaction on the phase diagram of the $V_1$-$V_2$ model.
Vgrid=13
markersize=250
V3=0.5
verbose=False
V1V2region=[2,6,0,4]
MyCl = mean_field_analysis()
MyCl.prepare_grid_run(V3=V3, verbose=verbose, Vgrid=Vgrid, V1V2region=V1V2region)
Vsarray_pool=MyCl.get_pool()
for counter, Vsarray in enumerate(Vsarray_pool):
MyCl.prepare_run(Vsarray=Vsarray, verbose=verbose)
MyCl.fixed_point_method()
MyCl.prt_postrun_data(verbose=verbose)
MyCl.store_grid_data(counter)
MyPlt = MyCl.plot_phasediag_fixedV3(figsize=4, markersize=markersize)
display.clear_output(wait=True)
MyPlt.show()
The inclusion of a finite $V_3$ evidently enlarges and stabilizes the topological phase.
Phase diagram of the long-range interaction model, with effective Rydberg potential.
Vgrid=11
markersize=400
verbose=False
V1V2region=[2,6,0,4]
rydberg=True
MyCl = mean_field_analysis()
MyCl.prepare_grid_run(verbose=verbose, Vgrid=Vgrid, V1V2region=V1V2region, rydberg=rydberg)
Vsarray_pool=MyCl.get_pool(rydberg=rydberg)
for counter, Vsarray in enumerate(Vsarray_pool):
MyCl.prepare_run(rydberg=rydberg, Vsarray=Vsarray, verbose=verbose)
if MyCl.sanity_check(rydberg=rydberg):
MyCl.fixed_point_method()
MyCl.prt_postrun_data(verbose=verbose)
MyCl.store_grid_data(counter)
MyPlt = MyCl.plot_phasediag_rydberg(figsize=4, markersize=markersize)
display.clear_output(wait=True)
MyPlt.show()
The following two commands integrate all the operations above.
MyCl.grid_run(verbose=verbose, Vgrid=Vgrid, V1V2region=V1V2region, rydberg=rydberg)
MyCl.plot_phasediag_rydberg(figsize=4, markersize=500).show()